Antimalarial lead identification of chemical starting points

Nature
Volume 465 Number 7296 pp267-390  20 May 2010
http://www.nature.com/nature/current_issue.html

Thousands of chemical starting points for antimalarial lead identification
Francisco-Javier Gamo, Laura M. Sanz, Jaume Vidal, Cristina de Cozar, Emilio Alvarez, Jose-Luis Lavandera, Dana E. Vanderwall, Darren V. S. Green, Vinod Kumar, Samiul Hasan, James R. Brown, Catherine E. Peishoff, Lon R. Cardon & Jose F. Garcia-Bustos

Abstract
Malaria is a devastating infection caused by protozoa of the genus Plasmodium. Drug resistance is widespread, no new chemical class of antimalarials has been introduced into clinical practice since 1996 and there is a recent rise of parasite strains with reduced sensitivity to the newest drugs. We screened nearly 2 million compounds in GlaxoSmithKline’s chemical library for inhibitors of P. falciparum, of which 13,533 were confirmed to inhibit parasite growth by at least 80% at 2 µM concentration. More than 8,000 also showed potent activity against the multidrug resistant strain Dd2. Most (82%) compounds originate from internal company projects and are new to the malaria community. Analyses using historic assay data suggest several novel mechanisms of antimalarial action, such as inhibition of protein kinases and host–pathogen interaction related targets. Chemical structures and associated data are hereby made public to encourage additional drug lead identification efforts and further research into this disease.

Chemical genetics of Plasmodium falciparum
W. Armand Guiguemde, Anang A. Shelat, David Bouck, Sandra Duffy, Gregory J. Crowther, Paul H. Davis, David C. Smithson, Michele Connelly, Julie Clark, Fangyi Zhu, María B. Jiménez-Díaz, María S. Martinez, Emily B. Wilson, Abhai K. Tripathi, Jiri Gut, Elizabeth R. Sharlow, Ian Bathurst, Farah El Mazouni, Joseph W. Fowble, Isaac Forquer, Paula L. McGinley, Steve Castro, Iñigo Angulo-Barturen, Santiago Ferrer, Philip J. Rosenthal, Joseph L. DeRisi, David J. Sullivan, John S. Lazo, David S. Roos, Michael K. Riscoe, Margaret A. Phillips, Pradipsinh K. Rathod, Wesley C. Van Voorhis, Vicky M. Avery & R. Kiplin Guy

Here, a library of more than 300,000 chemicals was screened for activity against Plasmodium falciparum growing in red blood cells. Of these chemicals, 172 representative candidates were profiled in detail; one exemplar compound showed efficacy in a mouse model of malaria. The findings provide the scientific community with new starting points for drug discovery.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.