PLoS Neglected Tropical Diseases
http://www.plosntds.org/
(Accessed 18 July 2015)
.
Human Onchocerciasis: Modelling the Potential Long-term Consequences of a Vaccination Programme
Hugo C. Turner, Martin Walker, Sara Lustigman, David W. Taylor, María-Gloria Basáñez Research Article | published 17 Jul 2015 | PLOS Neglected Tropical Diseases 10.1371/journal.pntd.0003938
Abstract
Background
Currently, the predominant onchocerciasis control strategy in Africa is annual mass drug administration (MDA) with ivermectin. However, there is a consensus among the global health community, supported by mathematical modelling, that onchocerciasis in Africa will not be eliminated within proposed time frameworks in all endemic foci with only annual MDA, and novel and alternative strategies are urgently needed. Furthermore, use of MDA with ivermectin is already compromised in large areas of central Africa co-endemic with Loa loa, and there are areas where suboptimal or atypical responses to ivermectin have been documented. An onchocerciasis vaccine would be highly advantageous in these areas.
Methodology/Principal Findings
We used a previously developed onchocerciasis transmission model (EPIONCHO) to investigate the impact of vaccination in areas where loiasis and onchocerciasis are co-endemic and ivermectin is contraindicated. We also explore the potential influence of a vaccination programme on infection resurgence in areas where local elimination has been successfully achieved. Based on the age range included in the Expanded Programme on Immunization (EPI), the vaccine was assumed to target 1 to 5 year olds. Our modelling results indicate that the deployment of an onchocerciasis vaccine would have a beneficial impact in onchocerciasis–loiasis co-endemic areas, markedly reducing microfilarial load in the young (under 20 yr) age groups.
Conclusions/Significance
An onchocerciasis prophylactic vaccine would reduce the onchocerciasis disease burden in populations where ivermectin cannot be administered safely. Moreover, a vaccine could substantially decrease the chance of re-emergence of Onchocerca volvulus infection in areas where it is deemed that MDA with ivermectin can be stopped. Therefore, a vaccine would protect the substantial investments made by present and past onchocerciasis control programmes, decreasing the chance of disease recrudescence and offering an important additional tool to mitigate the potentially devastating impact of emerging ivermectin resistance.
.
Author Summary
Novel and alternative strategies are required to meet the demanding control and elimination (of infection) goals for human onchocerciasis (river blindness) in Africa. Due to the overlapping distribution of onchocerciasis and loiasis (African eye worm) in forested areas of central Africa, millions of people living in such areas are not well served by current interventions because they cannot safely receive the antiparasitic drug ivermectin that is distributed en masse to treat onchocerciasis elsewhere in Africa. The Onchocerciasis Vaccine for Africa—TOVA—Initiative has been established to develop and trial an onchocerciasis vaccine. We model the potential impact of a hypothetical childhood vaccination programme rolled out in areas where co-endemicity of onchocerciasis and African eye worm makes mass distribution of ivermectin difficult and potentially unsafe for treating, controlling and eliminating river blindness. We find that, 15 years into the programme, a vaccine would substantially reduce infection levels in children and young adults, protecting them from the morbidity and mortality associated with onchocerciasis. Most benefit would be reaped from a long-lived vaccine, even if only partially protective. We also discuss how a vaccine could substantially reduce the risk of re-emergence of onchocerciasis in areas freed from infection after years of successful intervention.