PLoS Currents: Outbreaks (Accessed 9 July 2016)

PLoS Currents: Outbreaks
http://currents.plos.org/outbreaks/
(Accessed 9 July 2016)

.
Research Article
Invasive Meningococcal Meningitis Serogroup C Outbreak in Northwest Nigeria, 2015 – Third Consecutive Outbreak of a New Strain
July 7, 2016
BACKGROUND: In northwest Nigeria in 2013 and 2014, two sequential, localized outbreaks of meningitis were caused by a new strain of Neisseria meningitidis serogroup C (NmC). In 2015, an outbreak caused by the same novel NmC strain occurred over a wider geographical area, displaying different characteristics to the previous outbreaks. We describe cases treated by Médecins Sans Frontières (MSF) in the 2015 outbreak.
METHODS: From February 10 to June 8, 2015, data on cerebrospinal meningitis (CSM) cases and deaths were recorded on standardized line-lists from case management sites supported by MSF. Cerebrospinal fluid (CSF) samples from suspected cases at the beginning of the outbreak and throughout from suspected cases from new geographical areas were tested using rapid Pastorex® latex agglutination to determine causative serogroup. A subset of CSF samples was also inoculated into Trans-Isolate medium for testing by the WHO Collaborating Centre for Reference and Research on Meningococci, Oslo. Reactive vaccination campaigns with meningococcal ACWY polysaccharide vaccine targeted affected administrative wards.
RESULTS: A total of 6394 (65 confirmed and 6329 probable) cases of CSM including 321 deaths (case fatality rate: 5.0%) were recorded. The cumulative attack rate was 282 cases per 100,000 population in the wards affected. The outbreak lasted 17 weeks, affecting 1039 villages in 21 local government areas in three states (Kebbi, Sokoto, Niger). Pastorex® tests were NmC positive for 65 (58%) of 113 CSF samples. Of 31 Trans-Isolate medium samples, 26 (84%) tested positive for NmC (14 through culture and 12 through PCR); all had the same rare PorA type P1.21-15,16 as isolates from the 2013 and 2014 outbreaks. All 14 culture-positive samples yielded isolates of the same genotype (ST-10217 PorA type P1.21-15,16 and FetA type F1-7). More than 222,000 targeted individuals were vaccinated relatively early in the outbreak (administrative coverage estimates 98% and 89% in Kebbi and Sokoto, respectively).
CONCLUSIONS: The outbreak was the largest caused by NmC documented in Nigeria. Reactive vaccination in both states may have helped curtail the epidemic. A vaccination campaign against NmC with a long-lasting conjugate vaccine should be considered in the region.

.

Utility of a Dengue-Derived Monoclonal Antibody to Enhance Zika Infection In Vitro
July 5, 2016 · Research Article
Introduction: Zika virus (ZIKV) has emerged in dengue (DENV) endemic areas, where these two related flaviviruses continue to co-circulate. DENV is a complex of four serotypes and infections can progress to severe disease. It is thought that this is mediated by antibody dependent enhancement (ADE) whereby antibodies from a primary DENV infection are incapable of neutralizing heterologous DENV infections with another serotype. ADE has been demonstrated among other members of the Flavivirus group.
Methods: We utilize an in vitro ADE assay developed for DENV to determine whether ZIKV is enhanced by a commonly available DENV serotype 2-derived monoclonal antibody (4G2).
Results: We show that ZIKV infection in vitro is enhanced in the presence of the 4G2 mAb.
Discussion: Our results demonstrate that ADE between ZIKV and DENV is possible and that the 4G2 antibody is a useful tool for the effects of pre-existing anti-DENV antibodies during ZIKV infections.