CRISPR-Cas guides the future of genetic engineering

31 August 2018  Vol 361, Issue 6405
Special Issue: Technologies Transforming Biology

CRISPR-Cas guides the future of genetic engineering
By Gavin J. Knott, Jennifer A. Doudna
Science31 Aug 2018 : 866-869
The diversity, modularity, and efficacy of CRISPR-Cas systems are driving a biotechnological revolution. RNA-guided Cas enzymes have been adopted as tools to manipulate the genomes of cultured cells, animals, and plants, accelerating the pace of fundamental research and enabling clinical and agricultural breakthroughs. We describe the basic mechanisms that set the CRISPR-Cas toolkit apart from other programmable gene-editing technologies, highlighting the diverse and naturally evolved systems now functionalized as biotechnologies. We discuss the rapidly evolving landscape of CRISPR-Cas applications, from gene editing to transcriptional regulation, imaging, and diagnostics. Continuing functional dissection and an expanding landscape of applications position CRISPR-Cas tools at the cutting edge of nucleic acid manipulation that is rewriting biology.