Digital twins to personalize medicine

Genome Medicine
[Accessed 4 Jan 2020]


Open Access
Published: 31 December 2019
Digital twins to personalize medicine
Bergthor Björnsson, et al on behalf of the Swedish Digital Twin Consortium
Genome Medicine volume 12, Article number: 4 (2019
Personalized medicine requires the integration and processing of vast amounts of data. Here, we propose a solution to this challenge that is based on constructing Digital Twins. These are high-resolution models of individual patients that are computationally treated with thousands of drugs to find the drug that is optimal for the patient.
Despite great strides in biomedical advances during the past century, a large number of patients do not respond to drug treatment. According to a report from the US Food and Drug Administration (FDA), medication is deemed ineffective for 38–75% of patients with common diseases [1]. This results in patient suffering and increased healthcare costs. These problems reflect the complexity of common diseases, which may involve altered interactions between thousands of genes that differ between patients with the same diagnosis. There is a wide gap between this complexity and modern health care, in which diagnostics often relies on a small number of biomarkers of limited sensitivity or specificity. Digital and genomic medicine may bridge this gap by monitoring, processing, and integrating vast amounts of data from wearable digital devices, omics, imaging, and electronic medical records [2]. However, the integration and clinical exploitation of such complex data are unresolved challenges.
Application of the digital twin concept to personalize medicine
Digital twins are a concept from engineering which has been applied to complex systems such as airplanes or even cities [3]. The aims are to model those systems computationally, in order to develop and test them more quickly and economically than is possible in the real-life setting. Ideally, the digital twin concept can be translated to patients in order to improve diagnostics and treatment. This is the general aim of the DigiTwin consortium, which includes academic, clinical and industrial partners from 32 countries ( Practical and scalable solutions for specific problems will also require national initiatives. As an example, the Swedish Digital Twin Consortium (SDTC) aims to develop a strategy for personalized medicine ( The SDTC strategy, which is the focus of this Comment, is based on: (i) constructing unlimited copies of network models of all molecular, phenotypic, and environmental factors relevant to disease mechanisms in individual patients (i.e., digital twins); (ii) computationally treating those digital twins with thousands of drugs in order to identify the best performing drug; and (iii) treating the patient with this drug …