Developing a low-cost and accessible COVID-19 vaccine for global health

PLoS Neglected Tropical Diseases
http://www.plosntds.org/
(Accessed 1 Aug 2020)

 

Viewpoints
Developing a low-cost and accessible COVID-19 vaccine for global health
Peter J. Hotez, Maria Elena Bottazzi
| published 29 Jul 2020 PLOS Neglected Tropical Diseases
https://doi.org/10.1371/journal.pntd.0008548
Overview
There is an urgent need to advance safe and affordable COVID-19 vaccines for low- and middle-income countries of Asia, Africa, and Latin America. Such vaccines rely on proven technologies such as recombinant protein–based vaccines to facilitate its transfer for emerging market vaccine manufacturers. Our group is developing a two-pronged approach to advance recombinant protein–based vaccines to prevent COVID-19 caused by SARS-CoV-2 and other coronavirus infections. One vaccine is based on a yeast-derived (Pichia pastoris) recombinant protein comprised of the receptor-binding domain (RBD) of the SARS-CoV formulated on alum and referred to as the CoV RBD219-N1 Vaccine. Potentially, this vaccine could be used as a heterologous vaccine against COVID-19. A second vaccine specific for COVID-19 is also being advanced using the corresponding RBD of SARS-CoV-2. The first antigen has already undergone current Good Manufacturing Practices (cGMP) manufacture and is therefore “shovel ready” for advancing into clinical trials, following vialing and required Good Laboratory Practice (GLP) toxicology testing. Evidence for its potential efficacy to cross-protect against SARS-CoV-2 includes cross-neutralization and binding studies using polyclonal and monoclonal antibodies. Evidence in support of its safety profile include our internal assessments in a mouse challenge model using a lethal mouse-adapted SARS strain, which shows that SARS-CoV RBD219-N1 (when adsorbed to aluminum hydroxide) does not elicit eosinophilic lung pathology. Together, these findings suggest that recombinant protein–based vaccines based on the RBD warrant further development to prevent SARS, COVID-19, or other coronaviruses of pandemic potential.